The Prediction of the Man-Hour in Aircraft Assembly Based on Support Vector Machine Particle Swarm Optimization
نویسندگان
چکیده
ABSTRACT: As the representative of manufacturing industry, aircraft assembly lacks of effective method to forecast man-hour. The forecasting accuracy of existing methods is universally pretty low. On the basis of full analysis of aircraft assembly’s feature, this study proposes a forecasting model based on support vector machine (SVM), which is optimized by particle swarm optimization. It can carry out quantitative prediction of the process’ man-hour during aircraft’s assembly. Firstly, we decompose aircraft’s assembly work by the concept of work breakdown structure. Further, the process parameters related to man-hour were listed and we made necessary correlation analysis of these historical data. Parameters with high contribution are then used as input of forecasting model. A new forecasting model utilizing SVM is proposed, which carries out the process as the minimum research granularity. Its performance is compared with back propagation neural network. The process of automatic drilling & riveting is adopted as an example in order to present and validate the model. Experimental results reflect that SVM has high forecast precision and good fitness, so that it is suitable for small sample prediction. Through the optimization, it can effectively predict man-hour of assembly work in a short time while maintaining sufficient accuracy.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملPrediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine
Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...
متن کاملOPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کاملS3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization
Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...
متن کامل